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Final Scientific Report on
AFOSR Grant Number 81-0159
July 1, 1982 - Sept. 30, 1985

Optimal Control with Diminishing and Zero
Cost for Control

Principal Investigators: S.E. Shreve and V.]J. Mizel

Research under this grant focussed on singular and bang-bang
stochastic control and singular deterministic control. 1In each
of the following sections, we briefly outline these problems and
describe progress made on them. The resulting publications are
attached. The final section describes a book whose éuthorship

was partially supported by this grant.

Section 1. Singular Stochastic Control

The first singular control models were those of spaceéhip
control treated by Chernoff [10] and Bather and Chernoff [5,6].

Bather and Chernoff [5] cast their spaceship control problem in

the following form:
Minimize: E[ 1 dg + L« ]

C 2 T

Subject to: x_ = X + w_ - ft + T

In this formulation, {wt; 0 ¢t (T} 1is a standard Brownian

motion, {§t; 0 ¢t T} is a nondecreasing control process

adapted to the filtration of the Brownian motion and satisfying




EO = 0, and (Ct; 0 ¢t {T} 1is a nondecreasing adapted process

which causes (xt: O ¢t (T} to reflect at the origin, i.e.,

Ct = - min [(x - §_+ ws) A O] 0 <t ¢T.
0¢s<t S

Such a singular control problem in which the state process is

.reflected at the origin will be called a Reflected Follower

Problem. Bather and Chernoff conjecturéd that the optimal §

L4

should be the minimal process which keeps the state trajectory

below a time-varying boundary f(t), i.e.,

Et = max [(x + L gt - f(t)) v 0]: 0 <t <T.
0<s<t

One then would expect the value function for this problem to

satisfy the Hamilton-Jacobi-Bellman equation

1

Vt(t.x) + Z Vxx(t.x) = 0, 0 (x ¢ f(t), 0 < t T,
with boundary conditions

Reflection at origin: Vx(t.O) =0: 0¢t T

Terminal cost: V(T.x) = % kx2: x 2 0

On the boundary {(t.x); x = f(t), O ¢ t ¢ T}, the marginal cost

pushing should equal the marginal decrease in value, i.e.,
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Boundary: V_(t.f(t)) = = 0¢ct¢T.

Setting R(t.x)

Vx(t.x). Bather and Chernoff then derived the

conditions

1

R (t.x) + 2R _(t.x) =0: 0 ¢x¢f(t), 0¢t<T
R(t,0) = O; 0<ct<T.

R(T.X) = kx. X 2 Oo

R(t.x) = m0c: 0<t T,

and recognized these as the free boundary conditions associated
with the problem of stopping a Brownian motion so as to minimize
the expected sum of (a) zero if the motion reaches the origin
before terminal time T and before it is stopped. (b) kx .if the
motion does not reach the origin and is not stopped before
terminal time T, and ;rrives then at position x, (c) T%? if
the motion is stopped at time t < T. They then used this
optimal stopping problem to provide bounds on the free boundary
f.

. In their seminal 1980 paper [9], Benes, Shepp and
Witsenhausen posed two singular control problems. One of them

was the following Monotone Follower Problem:

T
Minimize: E J (x + L ft)z.
0
where § and w are as in the previous problem. They found a
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boundary of the form f(t) = 5¥T-t such that the optimal § is

the minimal process which keeps the state trajectory x + W ft

N below f(t), i.e.,

n

[}

W

" £, = max [(x + w_ - £(s)) V O]; 0¢t<T
0<s<t s

y -They also noted that this boundary is of the same form as that

found by Miroshnichenko [21] to demarcate the stopping and
3¢ .

continuation regions for the problem

)
)
. T
» Minimize: E (x + w )dt,
‘ ' ]
R
3
where the minimum is over stopping times T taking values in
‘ [0.T]. Benes, et al., also pointed out the connection with local
ﬁ time; namely, the optimal § 1is, eicept for a possible initial
- jump, equal to the local time of the state process on the
y boundary {(t,x): x = f(t), O ¢ t ¢ T}:
‘
1)
4
t
|
‘ e £ , = lim 2e l[f(s)-es.f(s)](x ¥ fs)ds'
! 0 elo 0
)
Motivated by these broad hints that some connection existed
‘j between the optimal stopping and singular control, we used this
k)
! grant to support our investigation of this issue. In Karatzas

and Shreve [1§8]. we established by probabilistic means the

.
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- following results. For the general Monoton Follower Problem

‘

" T

-;" Minimize: E[| h(ct.x )dt + £(t)dE, + g(xg)]

3 | ° Lo.7]

- Subejc; to: X, =X +w - Et; 0 <t T,

3

% where § 1is nondecreasing, the spatial derivative of the value

function is the optimal risk function for the stopping problem

*"
+\l
0y T .
W s ) .
i_ Minimize: E[ hx(t,x+wt)dt + f(o)l{T<T) + g (X+wt)1{T=T}]‘
B 0
:
v
b where the minimum is over all stopping times Tt 1lying in [0.,T].
! ,
) This result was proved under the assumptions ‘that f.gx and hx
W '
. are continuous, g and h are convex in x and grow at most
N .
': polynomially, and there exists an optimal process for the control
[}
problem. Furthermore, the region of the state space in which no
1,
"é control is exercised in the control problem (the optimal § |is
f: constant) is the optimal continuation region in the stopping
’ s . . . . . .
problem. In particular, an optimal stopping time exists in the
Py
a stopping problem. It was also shown that if f(t) 1is positive
o
ﬁ and bounded away from zero, h and g€ are nonnegative, and
&
- sup g ' (x) ¢ f(T), then an optimal process exists for the control
v ' x€R
s
Y problem.
e In Karatzas and Shreve [20] we also established similar
2] results for a general Reflected Follower Problem. The principle
I
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new feature is that for these problems, the Brownian motion in
the associated stopping problem is absorbed at the origin, a fact
already observed by Bather and Chernoff [5].

One benefit of the established connection between singular
control and optimal stopping is that bounds on the continuation

region of the stopping problem, obtained by posing and solving

,more and less favorable problems, translate into bounds on the

region of inaction in the control problem. This comparison idea
goes back to Bather [4] and has been used by Ba§her and'Chernof{
[5]. Chernoff [10], and Karatzas [17]. A second benefit of the
connection between these problems is that, because control
processes are more easily topologized than stopping times and are
thus more amenable to the continuity and compactness arguments
frequently used in existence proofs, it is feasible to prove the
existence of -optimal stopping times via the corresponding control
problem. Such a line of argument was used in [18], and it avoids
the heavy regularity assumptions usually required to prove the
existence of optimal stopping times. See, for example, Friedman

[12].

stopping to control.

A third benefit flows in the other direction: from
Because optimal stopping is a mature
research area, as compared to singular control, there are a large
number of analytical and numerical methods which can be brought
via optimal stopping to bear on singular control.

In particular,

the theory of numerical solution of Stefan problems becomes

available.
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ﬁﬁ; Section 2. Bang-Bang Stochastic Control
u',:!'
oyt
b A One of the first uses of Girsanov's formula to solve a
R stochastic control problem is due to Benes [7]. This so-called
Tu .
fﬁ "predicted miss™ problem is to minimize the distance of the final
o
R state x(1) €'Rd from a hyperplane subject to the system
1Y equation
" ‘
(Y
o\
W v t t
X, = x + A(s)xsds + B(s)u(s.xs)ds + C(s)dws.
e 0 0 0
o -
N
t:' ) A . .
ALY where A, B and C are deterministic matrix functions of time,
b . w is a multi-dimensional Wiener process, and the control is
f?{ . . d r .
. constrained by wu: [0,1] x R™ = [-1,1] . Davis and Clark [11]
g
[ o R
subsequently showed how to reduce this multi-dimensional problem
,l‘..v ’
,52 to the one-dimensional problem:
ANy
ot
N e 2 |
J Minimize: Ex“(1) !
. i
¢
«gé' Subject to 1
R,
e t :
et X = X + u(s,x_)ds + w(t),
. t s

0

N where w 1is a one-dimensional Wiener process. This
[
4..0
% s one-dimensional problem has been solved by different methods by
)
:Eq Benes [8]. lkeda and Watanabe [16], Davis and Clark [11],
Al

- Haussman [13], Balakrishnan [1] and Shreve [24]. The obvious




control law u(t.xt) = —sgn(xt) is indeed the optimal one.
Shreve [24] computed the transition probabilities for the

controlled process

(2.1) X, = X - sgn(xs)ds + v,
0

using Girsanov's formula and local time in a way very similar to
the method we are about to describe for the asyﬁmetric équation
(2.2).

Benes, Shepp and Witsenhausen [9] solved the related

problem:

o]
Minimize: E e-atxfdt.
0
Subject to:
t
X, = x ¢+ u(s.xs)ds + oW
0
~o < 90 < u(s.xs) < 91 < »,

They proved the existence of a number & such that an optimal

control law is given by

A ;"J‘f‘
D

if x. < &,

6 if x, 2 6.

~

" . Co R T,
TR MR WL ASA RS ORI ST AT



The resulting controlled process is governed by the equation

t
(2.2) X, = x ¢ J B(XS)ds + oW
0
where
60 if x < 6§,
B(x) =
61 if x 2 6

This is an asymmetric version of (2.1).
In the work supported by this grant, which appears in
Karatzas and Shreve [19], we computed the transition density for

X, governed by (2.2) as follows. According ‘to Girsanov's

formula, the desired density is given by
- X X

where

t t
C(t) = exp[J 6(w )dw - & J 6% (w )du].
0

Our computation thus requires knowledge of the joint distribution

t t
of (w(t). J o (w, )dw, . J 6 (v )du).
0

0




N |

y

5

o Assuming for notational simpiicity “ra- - .r - -
{

N

t

8 (2.4) J Bz(wu)du = 6 T(v) « 6, (: - 7

14 0

l‘

. where

‘

t
.f
F(e) = Hw 209"
b 0
is the occupation time for the right half-line. A variation of

a

N Tanaka's formula gives

)

¥ t

. (2.5) G(wu)dwu = ¢(wt) - ¢(wo) + (91 —BO)L(t).

. 0

. where

-

g - z

e

.. ¢(z) = 6(y)dy

' 0]

K and L(t) 1is the local time of w at the origin:

f

. t

< 1

L(t) = limz‘[ 1{—6 < w ((:)ds
e+0
0

> The local time appears because of the discontinuity of 6 at &
L]

{
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= 0. Thus, our problem has been reduced to a computation of the
trivariate density Px[wt € da, L(t) € db, I'(t) € drv] of
Brownian motion, its local time at the origin, and its occupation
time of the right half-line. Karatzas and Shreve [19] contains a
derivation via Laplace transforms and the Feynman-Kac formula for

elastic Brownian motion, and this paper also sketches a proof

:? based on a formula of D. Williams [25] involving inverse local
Q. -

\'-' .

b times.

= Section 3. Singular Deterministic Control )

This grant supported an investigation into the foundations
of the calculus of variations which led to the discovery that
even for regular one-dimensional control problems of Lagrange
type the optimal solutions ("minimizers”) can exhibit several
remarkable features. Fpr one thing, when the asymptofic behavior

of running cost of control is markedly different at certain

statvs from its behavior at others, then the optimal solution may
have infinite slope at certain times and can fail to satisfy the
integrated form of the Pontryagin minimum p(inciple.

. Particularly striking is the Lavrentiev phenomenon: under the
above circumstances, the optimal solution may be such that the

standard methods for approximating optimal solutions of control

problems (penalty methods, finite element methods and the like)
will all converge not to the minimizer itself, but instead to a
higher cost "pseudominimizer”. It follows that these methods
cannot in general detect singular minimizers, and will instead

lead to overly pessimistic cost estimates and suboptimal control

. . PR I PR PGP I I S VP IR AN Lt YT ?}.’1
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.ﬁ policies (both of which are not subject to improvement with
»
WA . . . .
W] increasing computational accuracy). This work is reported in
K Ball and Mizel [2,3].
l‘
:3) The generalization of the model studied to allow for a noise
¥ .
) .
%ﬂ term leads to a singular stochastic control problem of the type
T discussed in Section 1. The Lavrentiev phenomenon takes the form
e
9y ,of a gap between the best performance with a non-singular control
' "
it . . .
v policy and the best performance with a singular control policy.
o This work was the basis for Heinricher [14] and is succinctly
i3 .
»
ix reported in Heinricher and Mizel [15].
A",
.*' . ]
1209 This grant also supported Mizel and Trutzer [22,23] for work
oy
ad
4 on stochastic hereditary equations.
- - q
o,
-'N-
X
N
Loy Section 4. Martingales. Brownian Motion and Stochastic
[ Differential Equations
7
23 During the work described in this proposal, we have found
*
s
o the difficult and esoteric concept of Brownian local time to be
‘) .
S, an indispensible tool in dealing with a number of stochastic
X
st
) .
§~ control problems. To make local time a bit less esoteric, we
L%
()
20 have undertaken to write a book on its general nature motivated
;‘dl.
54 by its applications to control. This book will present many of
4
:4 the problems discussed here, and. so as to be nearly
-
¥ oy : .
i, self-contained, it will also include a full treatment of Brownian
oy . .
. : motion, stochastic integration with respect to continuous,
‘q
e .
e, square-integrable martingales, and strong and weak solutions of
.
L4
b .
) stochastic differential equations. It is our goal to make the
A topics treated in this proposal accessible to the matheamtics,
J‘
' Al
o'
WO
a

N .
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Jﬂf engineering and economics communities.

Upon the expiration of this grant, the book was about half

completed. A table of contents for the entire book is provided.
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§3.6.C: Reflected Brownian motion and the Skorohod eguation
§3.6.D: A generalized Itd rule for convex functions
§3.6.E: The Englebert-Schmidt zero-one law

3.7: Local Time for Continuous Semimartingales
3.8: Solutions to Selected Problems

3.9: Notes

3.10: References
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< Research on: Optimal Control with Diminishing or Zero Cost of Control.
ﬁ& In studying the effect, in deterministic control problems, of

- very marked dependence on system state, of the asymptotic growth

. of cost of control, we are preparing the ground for application of
m control to relatively sophisticated systems. In the long run we
e hope to analyze control properties for multidimensional nonlinear
“ﬁ systems such as those occurring in continuous elastic structures
gr stressed to configurations near their yield points. It is well

B known that such systems are subject to "fracture", and one outgrowth
ol of the present work may be an understanding of whether fracture can
o arise in consequence of the minimizer for the energy integral, although
e continuous, having a gradient which is infinite along a low dimensional
L; portion of the given structure. In the near term we expect to further
o clarify the one dimensional case through the use of classical analysis
) on spaces of absolutely continuous functions.

Jy Our work with Professor John Ball seems to have been the first

> to demonstrate regular problems with such anomalies as failure of

- the minimizer to satisfy the integrated Euler-Lagrange and "energy"
e equations (i.e., the maximum principle), as well as the existence
A% of a non zero gap between the actual minimum value of the cost
A integral and the lower limit it assumes for continuous controls

. ("Lavrentiev phenomenon"). Other researchers are currently becoming
‘R - involved in related issues involving the limitations of classical

T control and variational theories. The Lavrentiev phenomenon has

N important implications for the numerical solution of control and

ol variational problems since numerical approximation inevitably

i involves smooth admissible functions. An investigation is under

\{ way to analyze the behavior of corresponding diffusion type stochastic
i control problems (in which the cost of additional control has similar
o0 asymptotic growth properties), in order to test whether the limit

> of small noise perturbation will provide more easily treated

'j approximation methods for the deterministic problem.

}Q The long range purpose of our work in stochastic control is |
> to expand the set of models which are well understood analytically.

ﬁ Except for the linear-quadratic-Gaussian regulator and the models

B presented by Bene$, Shepp and Witsenhausen in 1980, there are very

. few stochastic control problems which can be "solved" in any sense

_ other than numerically. We have attacked specific problems in

N "bang-bang" and singular stochastic control; the former have arisen

5 in guidance and the latter in inventory and gueue control. Our

'iﬁ work in bang-bang control uses the tools of Brownian local time

(s and path decomposition, both of which are now under active investi-

X gation by probabilists. The singular control problems date back

\ to work by Chernoff in 1968, but are only now receiving widespread

;Z attention.

$4 In the next year we expect to learn more about local times

.,: and path decompositions, and we also expect to solve other specific

.:* control problems using these techniques. In contrast to singular

control, which now benefits from much activity, we are aware of no
other current work in the important and interesting area of bang-bang
control, so we expect our emphasis to switch somewhat in that direction.
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-continuous minimizer, one can have a global minimizer which fails
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Recent Developments in Deterministic and

Stochastic Optimal Control (AFOSR-82-0259)

V. J. Mizel and S. E. Shreve

February 8, 1984

During the past year, our investigation of the influence, in
deterministic control problems, of varying the growth rate for
cost of control has led to two significant developments. First,

L 4

it has been demonstrated that even for regular one-dimensional .

Lagrange type control problems (with pblynomial integrand), under

growth conditions which ensure existence of a global absoiutely

totally to satisfy the integrated form of the maximum principle!

Moée specifically, examples have been constructed of calculus of
variations problems in one real function whose global minimizer
satisfies neither the integrated forﬁ of the Euler-Lagrange |
equations nor the integrated form of the DuBois-Reymond ("energy")
equation. These examples are apparently the first known uniformly
regular problems possessing absolutely continuous but non-Lipschitz
minimizers. The feature of the integrand which permits such an
anomaly is that, despite a uniformly guadratic lower growth in
the cost of control, the polynomial growth of cost of control is
affected in an essential way by the choice aof state at which
control is applied.

Second, it was found that the long forgotten "Lavrentiev
phenomenon” (discussed in the recent book of Cesari) can readily

occur in such problems. That is, one can have a problem with a
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non-Lipschitz minimizer such that Lipschitz functions cannot
simultaneously approximate the minimizer itself and the cost
incurred with this minimizer; the infimum of the costs attained
by Lipschitz trajectories can be strictly greater than the cost
achieved by the absolutely continuous minimizer! The implications
of this phenomenor for the numerical study of control problems are
profound--numerically generated costs are inevitably connected with
Lipschitz trajectories. Hence the numerical study of such control
problems will invariably lead to overly pessimistic conclusions
concerning their optimal cost unless techniques are consciously
followed to bypass the Lavrentiev phenomenon.

The objective of our work in stochastic control has been
to study problems in which c¢ontrol is exercised in a "bang-bang"
fashion, (i.e., it switches discontinuously as the state process

crosses a "switching surface"), or in which control is singular,

(i.e., it can be thought of as the limit of impulse ééhtrols as the
sizes of the impulse approaches @ while the duration approaches
zero). The former problems first arose in the context of rocket
guidance with the desired trajectory serving as a switching
surface; the latter problems appear in invenpory control where
demand and supply processes provide impulses to the inventory
process. We have thus far succeeded in computing the statistics

of bang-bang controlled processes in some interesting one-dimensional
cases, and we believe the collateral discoveries we have made about
Brownian local time and path decompositions are of independent
interest. We have also shown how to reduce some fairly large
‘classes of singular control problems to much studied problems

in optimal stopping. We expect this reduction to result in
interplay between the two kinds of problems so as to enhance

understanding of both.
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